BIM education for advanced engineering communication

23Jun16

Today, the architectural, engineering, construction, and operation (AECO) industry is motivated to employ graduates educated about Building Information Modeling (BIM) tools, techniques, and processes, which help them to better integrate visualizations and data into their projects. In line with today’s AECO industry necessities and government mandates, globally active BIM educationalists and researchers are designing BIM educational frameworks, curricula and courses. These educationalists and researchers are also generating solutions to the obstacles faced during integration of BIM education into tertiary education systems (TESs). However, BIM researchers have taken few efforts recently to provide an overview of the level of BIM education across the globe through review and analysis of the latest publications associated with BIM education in TESs. Hence, this study attempts to fill this gap by providing a review of the efforts of globally active educationalists and researchers to educate AECO students about BIM in the context of advanced engineering education with visualization.

Introduction

Traditional Computer-Aided Design (CAD) drawings (i.e., graphical entities such as dots, lines, and curves) and 3D models (i.e., 3D based presentations, rendering, walk-through, etc. to enhance model-based visualiza- tions) have evolved into a new paradigm: intelligent Building Information Modeling (BIM). This tool consists of data-rich smart objects (defined in terms of building elements and systems such as spaces, walls, beams, and columns) being aggregated for the digital representation of physical and functional characteristics of facilities. Intelligent BIM has multiple dimensions from 3D to nD—such as 3D-visualization, 4D-scheduling, 5D- estimation, 6D-facility management applications, and 7D-sustainability—offering multiple benefits such as BIM model use throughout the building life cycle (Computer Integrated Construction Research Group 2011; Succar 2015). Hence, intelligent BIM provides an opportunity for Architectural, Engineering, Construc- tion, and Operation (AECO) industry stakeholders to evaluate possible solutions and identify potential prob- lems of the final product before the start of actual con- struction. The most common use of intelligent BIM is visualization, and the most essential part of visualization in engineering is communication. Visualization can en- hance the communication between AECO industry stakeholders, and result in better understanding of what a client is asking for. Advanced visualization techniques also improve the efficiency of information exchange in the context of AECO education in tertiary education systems (TESs), assisting AECO students in solving geo- metric tasks. Hence, the use of CAD and intelligent BIM, technological advances in spatial representation, and conceptual skills by which users can make intuitive decisions about spatial problems are all essential to de- livering better education for AECO students. Moreover, introducing AECO students to modern BIM technology, tools, and related processes will allow them to be further competitive and flexible in a rapidly changing Informa- tion Technology (IT) environment (Hsieh et al. 2015).

Based on today’s AECO industry expectations and gov- ernment mandates, many educational institutions across the globe are investigating how to incorporate BIM in TESs (Becker et al. 2011; Salman 2014; Rooney 2015). In addition, globally active BIM educationalists and re- searchers have invested huge efforts in delivering BIM educational frameworks, designing BIM curricula, con- ducting BIM courses, and developing new strategies for overcoming the obstacles faced during BIM implementa- tion. Relatedly, a few BIM educationalists and re- searchers have delivered overviews of BIM educational trends in the past (Barison & Santos 2010c, 2011; Wong et al. 2011; Lee & Dossick 2012). Recently, NATSPEC, a non-profit organization published an update on the state

of BIM awareness and adoption in countries such as the USA, Canada, the Czech Republic, Finland, the Netherlands, Norway, the UK, South Africa, China, Hong Kong, Singapore, Japan, Australia, and New Zealand. NATSPEC’s study revealed that BIM education and its uptake are still at different levels of implementa- tion across the globe, and provided an outline declaring that current BIM education tends to focus on the use of particular BIM software. In the end, NATSPEC’s report emphasized the need for education connected to open BIM, BIM management, and a collaborative working environment for them (Rooney 2015). Open BIM and BIM management in academic BIM education refers to educating AECO students on how students of different disciplines need to collaboratively design, construct, and operate buildings based on open standards and work- flows. However, NATSPEC’s study failed to document completely the status of BIM education and awareness in each country. Another drawback was that the report was purely based on the responses provided by a global group of parties with an interest in BIM. Moreover, no recent efforts have been undertaken by BIM researchers to review and analyze the latest BIM publications in order to provide an overview of the state of BIM education worldwide.

Advertisements


No Responses Yet to “BIM education for advanced engineering communication”

  1. Leave a Comment

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: